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1 Introduction

The deliverable presents the image processing pipelines for the registration of pre- and postoperative MRI
acquisitions of the patient’s brain with intraoperative optical images of the patient’s exposed brain cortex.
This pipeline automatically co-localizes intraoperative optical and preoperative MRI measurements, is
totally included in the clinical practice and does not need any specific medical device to be added in the
operative room. Indeed, it only requires MRI volumes that are systematically acquired by the radiologists
for brain tumor resection operations. This pipeline is proposed in the context of HyperProbe aims, which
rely on the patient clinical pipeline represented in Fig. 1.

Figure 1: Clinical pipeline for patient undergoing a brain tumor resection operation. In the context of
the Hyperprobe, specific intraoperative optical measurements (surrounded in orange) were added to the
clinical practice. Intraoperative optical biomarkers and clinical gold standard biomarkers are linked by
specific quantification models developed in WP5. Functional brain mapping biomarkers links are indicated
by green arrows. Tumour/healthy status links are represented by red arrows. Blue arrows indicate the
co-localization (spatial registration) of intraoperative optical and gold standard clinical measurements.

Pre-operative MRI acquisitions aim to assess the diagnosis of cancer and initiate the brain tumor surgery.
Anatomical MRI acquisitions such as T1 and FLAIR volumes are used to identify the tumor in the patient
brain and fMRI acquisitions allow the identification of brain functions. Using these identifications, the
radiologist can define the intervention risk by calculating the distance between the brain function and the
lesion.

During neurosurgery, the patient has undergone craniotomy to allow access to the cerebral cortex. The
craniotomy induces a brain shift that invalidates the relevance of neuronavigation to localize functional
areas during surgery [10]. To avoid localization errors, intraoperative MRI has been suggested [8], but it
complicates the surgical procedure and is, therefore, rarely used. During neurosurgery, electrical brain
stimulation (EBS) is the gold standard, but this technique is mainly limited by its low spatial resolution
(≈ 5 mm [17]) and has the potential risk to trigger epileptic seizures. This technique allows a robust and
reliable detection of many functional areas, but could be traumatic for the patient, by inhibiting certain
cognitive functions such as speech for example. EBS is also complicated to perform and requires a very
strong expertise. During the resection of the tumor, extracted tissues are controlled by histopathological
measurements that could be guided by fluorescence imaging [9, 18].

In order to complement actual gold standards, the Hyperprobe devices 2 and 2.1 have the objective
to assess functional, metabolic and morphological information of the brain tissue using hyperspectral
imaging. To validate the tissue measurements, a comparison with pre- and intraoperative gold standards is
required. The comparison with intraoperative histological and electrical brain stimulation measurements
is direct since the localization of the controlled tissue is visible by imaging. However, the comparison
with preoperative MRI acquisitions need the development of col-localization techniques. The objective is
to only co-localize the brain cortex of MRI and optical acquisitions. Indeed, as shown on Fig. 1, fMRI
is used as a brain mapping clinical gold standard to complement EBS. Hyperprobe devices will only
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investigate a brain mapping before tumor resection with a intact brain cortex. Thus, there is no need
for 3D co-localization between MRI and images acquired from hyperprobe devices, as the tumoral status
gold standard is not MRI. During the resection, EBS and histological measurements will remain the gold
standard techniques.

In the literature and in commercial systems, the comparison between optical measurements and
preoperative MRI is conducted using a registration procedure based on landmarks [3, 4, 16]. These
“landmarks” denote identical locations in optical images and MRI volumes and are obtained with clinical
neuronavigation systems. This registration approach has two main disadvantages:

1. It requires the intervention of the neurosurgeon with the use of a neuro-navigation tool and thus
increases the duration of the surgery.

2. Locations indicated by neuro-navigation tools are not totally accurate. For some patients, we
observed 2 cm shifts between points identified by the neuro-navigation tool and those validated by
the neurosurgeon.

Recently, Villa et al. [22] proposed a novel technique to register hyperspectral images on MRI. The
technique is based on the use of a multimodal system during neurosurgery. The system is composed of a
RGB-Depth and hyperspectral cameras. The RGB-Depth camera captures the patient’s facial geometry,
which is used for registration with the preoperative MRI. Once MR depth registration is complete, the
integration of HS data is achieved using a calibrated homography transformation. The hyperspectral
camera is then moved to capture the craniotomy site. This technique aims to register optical images on
MRI with a great precision (1.88± 0.19 mm) compared to the landmark-based technique (4.07± 1.28 mm).
However, this technique has the major disadvantage of adding a dedicated device in the operating room,
which changes the clinical routine. Moreover, moving the optical system during the calibration phase can
be very complex. Operating room space is limited and moving the optical system can compromise the
sterile area.

To overcome the limitations of current techniques, we propose to develop an automatic procedure that
take advantages of the common cerebral structures on the optical images and the anatomic MRI volumes:
the large blood vessels, see Fig. 2.

Figure 2: Intraoperative optical image and pre-operative MRI volume (T1 sequence with injection of
Gadolinium) of patient 1.

In this report, we will describe the main blocks and parameters of the automatic registration pipeline and
evaluate its performance with 9 patients. The code of this registration pipeline is available in a Gilab
repository and the dataset of results can be found here.

2 Automatic registration pipeline

We represented the flowchart of the automatic registration pipeline in Fig. 3. This pipeline aims to register
pre- and postoperative MRI acquisitions of the human brain with intraoperative optical images of the
human brain cortex. The pipeline has been developed with in Python with open-source frameworks, like
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itk v5.4 [13,24], itk-elastix v0.19.1 [15,19], opencv v4.9 [2], scipy v1.12 [23] and scikit-image v0.22 [21].
These following images have to be acquired to process the registration procedure, see table 1.

Required data International clinical standard Standard at HCL - CHU Saint-Etienne Field of view Resolution
Preoperative T1 volume Full head Clinical standard

with injection of Gadolinium (≈ 1mm3)
Preoperative FLAIR Full head Clinical standard

volume (≈ 1mm3)
Tumor volume Full head Clinical standard
segmentation (≈ 1mm3)
Intraoperative Entire surgical window At least equivalent
optical images The image is centered on the surgical window to that of the T1 volume

which is centered on the tumor (≤ 1 mm2)

Table 1: Imaging technique required to performed the automatic registration pipeline.

The use of the T1 and FLAIR MRI volumes does not change the clinical practice of the radiologists since
these volumes are systematically acquired for each patient. T1 volume is usually named “neuronavigation
volume”. This volume is used as reference: the other MRI volumes (FLAIR, tumor volume segmentation,
fMRI) are registered on this volume. At Lyon and Saint-Etienne hospitals (HCL and CHU Saint-Etienne),
the tumor volume is segmented from the T1 or FLAIR acquisitions by radiologists. This not systematically
the case for other hospitals, but solutions can be implemented as proposed in section 4.

In the registration pipeline, the T1 and the tumor segmentation volumes were used to define a 2D
projection of the T1 volume centered on the center of mass of the patient’s tumor (see section 2.1). The
tumor is represented with a blue contour.

The blood vessels were enhanced in the MRI projection and in the optical image with a Hessian-based
Frangi vesselness filter [7]. Then, the blood vessels were segmented with a thresholding procedure and the
topology of the blood vessels was extracted with a skeletonization algorithm (see section 2.2).

Using the skeletons of the blood vessels in the MR and optical images, the similarity transform that best
match the two images was calculated (see section 2.3). The registration procedure was initialized with 9
points located around the tumor to help the convergence.

Figure 3: Flowchart of data analysis, including definitions of the imaging modalities and image processing
techniques used in the automatic registration pipeline. In the T1 projection, the blue contours represented
the delineation of the tumor. The red points in the optical and T1 images corresponded to points used to
initialize the registration.
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2.1 Projection of the T1 volume

In our study, the registration of a 2D optical image on a 3D MRI volume is a complex problem because these
data have geometric differences. Indeed, the 2D optical image may have perspective distortions depending
on the position of the camera relative to the patient brain. The compensation of these distortions requires
a robust calibration of the camera relative to the patient brain (position, focal length, angle . . . ) that
cannot be easily performed in the critical context of the surgical room.

To simplify the problem, we decided to register the 2D optical image on a 2D projection of the T1
volume. The steps performed to create the projection of the T1 volume are represented in Fig. 4 and are
enumerated below:

1. The brain was extracted from the T1 volume using HD-Bet [11].

2. The binary mask of the tumor was registered on the T1 volume with a rigid transform using the
framework itk-elastix in Python [15,19].

3. The T1 volume was rotated so that the transverse axis of the MRI coincides with the axis passing
through the origin of the MRI volume (one of the corners of the volume) and the center of gravity
of the tumor. The center of rotation was the center of gravity of the MRI volume.

4. The 2D projection was obtained with an orthogonal projection along the transverse axis.

Figure 4: Steps executed to create the projection of the T1 volume. The blue contour represented the
delineation of the tumor.

2.2 Segmentation of the blood vessels MR and optical images

The large blood vessels were segmented in the 2D projection of the T1 volume (see Fig. 4) and in the
optical image (see Fig. 3) with a Hessian-based Frangi vesselness filter [7]. This filter was applied with
the framework itk in Python [13,24] at the image pixel level and is based on the eigenvalue decomposition
of the local Hessian matrix of the image.

The Hessian-based Frangi vesselness filter accentuates the contrast between tubular objects (blood vessels)
and the background. The filter also incorporates a multiscale smoothing, performed with several Gaussian
filters having different standard deviation values. It is used to determine the probability of a voxel
belonging to a vessel of a particular diameter.

For the 2D projection of the T1 volume and the optical image, we used five different scales from N mm to
3 mm to detect the large blood vessels. N corresponds to the resolution of the T1 volume, such that the
filter is able to detect the smallest blood vessels in the MR image. The parameters were the same for the
two images, the scale in pixels was adapted with the resolution of the images.

The Hessian-based Frangi vesselness filter has to be applied to grayscale images. For color optical imaging,
the filter was used with the image of the red channel because, for the wavelengths captured by this
channel, the absorption of light by the blood is lower than for the other channels. As a result, the contrast
measured between grey matter and small blood vessels (< 1 mm) is lower for this channel than for the
others. However, the contrast between large blood vessels (> 1 mm) and grey matter is still significant,
see Fig. 5 B. In the case of a hyperspectral image, a wavelength or a combination of wavelengths in the
near infrared can be used, see Fig. 5 C.
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Figure 5: Optical images used by the Hessian-based Frangi vesselness filter for patient 1. A – Color
image acquired with a commercial color camera (BASLER acA2000-165uc). B – Red channel of the color
image A. C – Image acquired at 790 nm with a commercial hyperspectral camera (XIMEA MQ022HG-
IM-SM5X5-NIR).

The images obtained after applying the Hessian-based Frangi vesselness filter on the MRI and optical
images are represented in Fig. 6 B and Fig. 7 B. Then, these images were thresholded to get a binary
image of the large blood vessels. We applied an arbitrary threshold of 15% of the maximum gray scale
value for the optical image and a threshold of 4% of the maximum gray scale value for the MR image [1].
The binary optical image was undersampled to match the resolution of the MR image. Finally, the
topology of the blood vessels was extracted with a skeletonization algorithm, see Fig. 6 C and Fig. 7 C.

Figure 6: Segmentation of large blood vessel on the 2D projection of the T1 volume for patient 1. A - 2D
projection of the T1 volume. B - Image with enhanced blood vessels. C - Image after thresholding and
skeletonization.

Figure 7: Segmentation of large blood vessel on the optical image for patient 1. A - Red channel of the
color image. B - Image with enhanced blood vessels. C - Image after thresholding and skeletonization.

2.3 Registration procedure

Using the skeletons of the blood vessels in the MR and optical images, we calculated the similarity transform
that can be apply to the optical skeleton to match the MRI skeleton. A similarity transformation is
defined as:

T (x) = sR(x− c) + t+ c, (1)

with s a scalar, R a rotation matrix, c the centre of rotation and t a translation vector. This means that
the image is treated as an object, which can translate, rotate, and scale isotropically. The registration
procedure was performed with the framework itk-elastix in Python [15, 19] with the following parameters:
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Transform Similarity transform
Optimizer Quasi-Newton method
Metric Normalized correlation

Fixed center of rotation Initialization point
Multi resolution registration No

Table 2: Parameters used with the framework itk-elastix.

The normalized correlation coefficient NCC was calculated between the fixed image IF and the moving
image IM which had undergone the similarity transform T (see Eq. (1)):

NCC(IF , IM ) =

∑

xi∈ΩF

((

IF (xi)− IF
) (

IM (T (xi))− IM
))

√

∑

xi∈ΩF

(

IF (xi)− IF
)2 ∑

xi∈ΩF

(

IM (T (xi))− IM
)2

, (2)

with ΩF the domain of the fixed image IF and IF and IM the average grey-value of the images IF and
IM , respectively. In Fig. 8, we represented an overview of the registration procedure.

Figure 8: Registration procedure of the optical skeleton to the MRI skeleton. The procedure is composed
on an iterative keypoint initialization, an iterative registration of the rotated optical skeleton and the
selection of the best registered image.

The optical skeleton was registered with two interlocking iterative processes:

1. The optical skeleton was placed on the MRI skeleton using keypoints, see figure 8. The keypoint in
the optical image (red point in figure 8 B) was iteratively placed on a keypoint of the MRI skeleton
(red points in Fig. 9 A).

On the MRI skeleton, nine different keypoints located around the tumor were defined to help the
convergence of the registration. The keypoints were located at the centre, the four vertices and the
four centres of each side of the rectangle encompassing the contour of the tumour. In Fig. 9, the
keypoints and the contour of the tumor are indicated in red and in blue, respectively.

On the optical skeleton, only one keypoint was defined and located at the center of mass of the
surgical window. Indeed, as we indicated in table 1, the center of the tumor is usually close to the
center of the surgical window. Thus, the keypoint in the optical image should be close to the center
of the tumor.

If this criterion is not valid, the user can manually select a keypoint in the MR and the optical
images. The optical and MRI keypoints can also be identified in the optical image and the MRI
volume using the neuronavigation system during the neurosurgery.

2. Once the optical skeleton was placed on the MRI at the keypoint location, the optical skeleton was
rotated and registered. The image was rotated with an angle included between 0o and 360o every 1o.
These angles were tested to help the convergence of the registration and avoid a poor intersection
between the two binary masks.

In Fig. 10, we represented the registration metric calculated during the two interlocking iterative
processes as well as the optical skeleton registered on the MRI skeleton for the similarity transform that
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Figure 9: Keypoints in MRI (A) and optical (B) skeletons for patient 1. The blue contour indicated the
delineation of the tumor.

minimized the metric. The nine colours used to plots the registration metrics in image A corresponded to
the metrics calculated for the 9 keypoints. The whole registration process was performed in 7 min on a
laptop (processor: 12th Gen Intel Core i7-12800H × 20, RAM: 32 GB).

The minimum registration metric (normalized correlation = −0.19) was calculated for a rotation angle
of 92o using the keypoint located at the center of the tumor. Low normalized correlation values are
only obtained with this keypoint and for a rotation angle around 92o , which indicates the registration
procedure is very dependent of the keypoint initialization and requires a complete rotation of the optical
skeleton (all angles between 0o and 360o).

Figure 10: Registration results for patient 1. A - Registration metric calculated during the two interlocking
iterative processes. B - Optical skeleton (in red) registered on the MRI skeleton (in blue) for the similarity
transform that minimized the metric. The magenta pixels indicated an overlap between the optical and
MRI skeletons.

2.4 Reconstruction of the optical image on the MRI volume

In section 2.3, we described the steps to calculate the similarity transform that can be applied to the
optical skeleton to match the MRI skeleton. Once this transform has been calculated, it can be applied to
other optical images for a projection on the MRI volume, see Fig. 11.

In this procedure, the optical image can be a color image (like Fig. 11) but can also be a statistical
image that delineates a brain function in the optical image [4]. First, the optical image was undersampled
to match the resolution of the MR image (see section 2.2). Then, the optical image was rotated. The
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Figure 11: Procedure to project an optical image on the anatomical MRI volume (T1).

angle of rotation was identified during the registration procedure, see section 2.3. The rotated image was
placed on the MRI projection with the keypoint identified in section 2.3. Then, the similarity transform
was applied to the rotated image. The RGB registered on the MRI projection is represented in Fig. 12.

Figure 12: Registration of the optical image on the MRI projection for patient 1. A – MRI projection. B -
Optical image registered on the MRI projection (A).

With the image registered on the MRI projection, a 3D volume of the optical image can be recon-
structed. For each pixel (x,y) of the MRI projection having a non-null RGB value (see Fig. 12 B), the
location of the surface of the MRI volume along the z axis was identified (first non-null values of the mask
of the brain surface). The voxels found at these positions took on the value of the optical image. Finally,
the reconstructed optical volume was rotated to get back to the space of the T1 volume (see section 2.1).

This reconstruction procedure was applied to the optical statistical image used to identify the motor
cortex, see Fig. 13. Details regarding the calculation of this statistical map can be found in Ref [4]. The
T1 volume is represented with three overlays. In red, we represented the pre-operative fMRI map (binary
mask) obtained with a left finger tapping task. In blue, we represented the intraoperative functional optics
map (binary mask) obtained with a finger tapping task. The white contour represents the contour of the
surgical window (see image in figure 12 A). We can observe a good correlation between the functional
identifications provided by fMRI and optical imaging, see section 2.5 for more details.
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Figure 13: Reconstruction procedure applied to intraoperative functional brain map obtained with RGB
imaging for patient 1. A - Intraoperative functional brain map obtained with RGB imaging [3]. The
magenta contour is represented by the volume in blue on image B. B – T1 MRI volume and three overlays.
The preoperative fMRI (left finger tapping) is represented in red, the intraoperative functional optics is
represented in blue (left finger tapping). The surgical window is represented with a white contour.

2.5 Projection of the MRI volume on the optical window

In section 2.3, we described the steps to calculate the similarity transform that can be applied to the
optical skeleton to match the MRI skeleton. Once this transform has been calculated, its inverse transform
can be estimated to reconstruct the MRI volume in the optical space, see Fig. 14.

Figure 14: Procedure to reconstruct MRI data in the optical space.

First, a 2D projection of the MRI volume was calculated, see details in section 2.1. Using the inverse
similarity transform, the MRI projection was reconstructed in the space of the rotated optical image that
was used to calculate the similarity transform, see section 2.3. Finally, the reconstructed MRI image was
rotated to match the orientation of the initial image.

In Fig. 15, we represented the reconstruction of the T1 volume in the optical space. In image A, the
reconstructed image is represented in false color. In image B, the reference optical image is plotted. In
both images, the green contour represented the contour of the surgical window and the gray overlay
represented the blood vessel skeleton calculated with the optical image B, see section 2.2. The validation
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of the registration method has been evaluated in section 3.

Figure 15: Reconstruction of the T1 MRI volume in the optical space for patient 1. A – MRI reconstructed
image. B – Reference optical image. In both images, the green contour represented the contour of the
surgical window and the gray overlay represented the blood vessel skeleton calculated with the optical
image B.

This reconstruction procedure was applied to the fMRI statistical image used to identify the motor
cortex. In Fig. 16, we represented the optical image with two contours obtained from the statistical maps
(contours of the statistical inferences). The red and blue contours indicated the delineation of the motor
cortex identified with fMRI and optical imaging, respectively.

Figure 16: Contours of the functional statistical maps represented on the optical image for patient 1. The
red and blue contours indicated the delineation of the motor cortex identified with fMRI and optical
imaging, respectively.

The DICE coefficient [6] was computed between the binary functional masks obtained with fMRI
and optical imaging, see Fig. 16. The DICE coefficient was 0.71, which indicates a good correspondence
between the two binary masks. However, we can observe some differences between the functional statistical
maps. On the top left image, the area of the optical functional mask (blue contour) is smaller than that
of the fMRI mask (red contour). On the bottom right image, a portion of the gray matter is identified
as activated with optical imaging, but not with fMRI. This could be explained by the differences of
the contrasts measured by optical imaging and fMRI. fMRI is related to the measure of the BOLD
signal (Blood Oxygen Level Dependent) which reflects the changes in the paramagnetic properties of
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deoxygenated hemoglobin following the neuronal activation. The fluctuation of the BOLD signal varies
with the cerebral blood flow and volume with a poor spatial resolution (≈ 1 mm) compared to that of
optical imaging (≈ 70 µm). On the contrary, optical imaging relies on a direct measurement of oxy- and
deoxygenated hemoglobin due to the blood volume changes that follows the neuronal activity. These
differences in the spatial resolution and in the origin of the contrast may explain the differences between
the functional identifications. This hypothesis was also expressed in a study conducted by Narayan et
al. [14]. The authors indicated that the differences observed between fMRI and optical imaging may be
due to the venous origin of the BOLD fMRI signal, when some studies point that the origin of the optical
signal is more arterial. These hypothesis are currently investigated in WP5 to improve the correlation of
intraoperative optical biomarkers and clinical fMRI biomarkers.

3 Validation of the registration algorithm

The registration algorithm has been verified with 9 patients using a landmark-based validation approach [5].
With this method, the accuracy of alignment between two images is evaluated by comparing anatomical
or structural points (landmarks) in both images. At least three landmarks were manually selected based
on distinct identifiable features in both images such as the intersection of two blood vessels. After the
registration process, the mean and standard deviation of the Euclidean distance (in mm) were calculated
between the corresponding landmarks, giving a quantitative metric for the evaluation of the registration
process.

In Fig. 17, we represented the landmarks used to validate the registration method. The registered
landmarks are represented with red stars in the registered image (A) and in the fixed image (MRI
projection, image B). The landmarks selected in the MRI projected are represented with green points in
image B.

Figure 17: Landmarks used to validate the registration method for patient 1. A – Registered optical
images and landmarks (red stars). B – Registered landmarks (red stars) and landmarks of the fixed image
(green points).

In table 3, we indicated the mean and standard deviation of the Euclidean distance calculated for the
9 patients of this study.

Patient ID Registration type MRI projection Euclidean distance (mm)
resolution (mm) (mean ± standard deviation)

1 Automatic 1 1, 32± 1, 27
2 Automatic 0, 46 1, 30± 0, 22
3 Automatic 0, 46 1, 08± 0, 15
4 Manual selection of the keypoints 0, 46 2, 38± 1, 72
5 Manual selection of the keypoints 0, 46 1, 77± 0, 48
6 Automatic 0, 90 1, 22± 1, 00
7 Automatic 0, 46 1, 06± 0, 46
8 Automatic 0, 46 1, 65± 0, 56
9 Automatic 0, 5 1, 09± 0, 67

Table 3: Mean and standard deviation of the Euclidean distance calculated for the 9 patients in this study.
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The automatic registration procedure was performed with the 9 patients of our study, see Fig. 18 in
the appendix. The registration was successfully executed for 7 patients. For 2 patients (patients 4 and
5), the automatic registration procedure was put into default. The registration was achieved with the
manual selection of the MRI and optical keypoints, see section 2.3. Indeed, the automatic procedure,
based on the use of keypoints located around the tumor, did not lead to convergence of the registration
process. For these two patients, this failure can be explained by the fact that the conditions set out in
table 1 were not met. The optical image was obtained with a surgical microscope that did not acquire the
whole surgical window. Moreover, the image was centered on the functional area and not on the tumor.
Thus, the optical keypoint was not located near the MRI keypoints, which put the automatic registra-
tion procedure into default. To overcome this failure, we manually selected a pair of optical/MRI keypoints.

With the landmark-based validation approach, the average Euclidean distance between the optical and
MRI validation landmarks is 1, 43± 0, 72 mm, which corresponds to an errors of 2, 77± 1, 2 pixels. This
results are very promising, indeed, the mean registration error is less than the mean error obtained by
Villa et al (1.88 ± 0.19 mm) [22]. Although Villa et al obtained smaller standard deviation error, our
method has the advantage to be directly used in the clinical routine, whereas the method proposed by
Villa et al requires the use of a dedicated imaging system composed of 2 cameras (including a RGB-Depth
camera providing geometric data through a depth-sensing device) and a tracking system.

4 Areas for improvement

• The automatic registration pipeline uses the tumor volume segmentation for the calculation of a 2D
projection of the T1 volume, see section 2.1. In Lyon and Saint-Etienne hospitals, the segmentation
of the tumor is a part of the clinical standard, but it is not the case for all hospitals, see table 1. To
overcome this limitation, an automatic segmentation of the tumor volume can be implemented. For
this purpose, the BraTS toolkit [12] can be used.

• The robustness of the registration procedure can be improved, see section 2.3. The procedure
relies on the identification of the best similarity transform that minimizes the registration metric
(normalized correlation coefficient, see Eq. (2)). In Fig. 10, we can see that the minimum metric is
found for a rotation angle of 92o of the optical image. Although the registration procedure converges,
the robustness of the registration procedure could be improved by decreasing the value of the metric.
This could be achieved by combining multiple registration metrics and multiple fixed and moving
images. In addition to the actual registration procedure, signed distance images could be registered
with a mean square difference metric. The signed distance images are obtained with a distance
transform of binary skeleton masks (distance from every binary image pixel to the nearest zero
pixel).

• In order to improve the precision of the registration process, a 3D non-rigid transform (b-spline) can
be added to the registration procedure. This transform can be used after the reconstruction of the
optical volume to have to better match of the cerebral structures.

• Some parameters of the procedure (scales of the Hessian-based Frangi vesselness filter, segmentation
thresholds) have to be adapted depending on the image, see section 2.2. For some patients, the
registration procedure used large blood vessels (≈ 3 mm) to match the common structures in the
optical and MR images. However, for other patients, the registration procedure used small and
large blood vessels, which requires the detection of vessels width at the MRI resolution. In order to
solve this problem, an automatic segmentation of the blood vessels in MR and optical images can
be implemented using deep learning. For this purpose, we are working with our collaborators of
Technical University of Munchen.

• The automatic keypoints position around the tumor can be improved. Indeed, we saw that the
method was put into default for 2 patients, see table 3. An automatic search of optical and MRI
keypoints can be initialized using feature matching [20].

The definition of the optical and MRI keypoints could also be improved with the acquisition of
optical images with a field of view centered on the entire surgical window (see table 1). An other
approach could be to propose a second longer registration pipeline, in case the first one fails, using
more and more distant starting point to cover a broader area around the tumor location.

• We plan to investigate a new approach to register optical images on preoperative or postoperative
MRI T1 volumes.
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The BraTS toolkit contains a huge dataset of T1 volumes. For each volume, several 2D projections
could be created from the extracted T1 volumes. From these projections, we can create synthetic
optical images with the addition of supplementary blood vessels of various diameters. Using this
dataset, we can train a neural network (UNET) to calculate the similarity transform for projecting
the synthetic optical image on the MRI volume. For this future work, we plan to work with our
collaborators of Technical University of Munchen.

Appendix

Figure 18: Optics to MRI registration results obtained for patient 1 to 9.
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