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1 Introduction

The deliverable presents the development and testing of software tools for reconstructing morpho-chemical
quantitative maps from spectroscopy imaging. The objective of the deliverable is to design algorithmic
solutions that can be used to extract information about the molecular content of living tissue from
spectroscopy measurements using optical systems such as the HyperProbe systems developed within the
project.

The quantitative information about molecular composition can yield various biomarkers of structural
and (patho-)physiological tissue properties. We aim to apply the reconstruction algorithms to monitor
tissue oxygenation through the inference of endogenous chromophores, such as oxy- and deoxyhaemoglobin;
to access mitochondrial metabolism and cellular energetics via cytochrome-c-oxidase; and to perform
morphological tissue characterisation through a combination of molecules including also lipid and water.
The algorithmic tools will be tested on datasets collected throughout the project, including ex-vivo surgical
biopsies of brain tissue, in-vivo animal models, tissue phantoms, and publicly available in-vivo human
studies.

Finally, the developed software will be utilized for identifying the optimal wavelength range for
designing the clinical instrumentation prototypes (HyperProbe2 and 2.1).

In the following sections, we will describe several methodological approaches that we developed to
address the chromophore reconstruction problem. These methods are based on deep learning as well as
classical algorithms for targeted chromophore detection.

2 Identifying chromophore fingerprints of brain tumor tissue on
hyperspectral imaging using principal component analysis

In the first work, we investigate the possibility of identifying the presence of chromophores in brain tissue
by applying principal component analysis (PCA) to hyperspectral imaging (HSI).

HSI is an optical technique that processes the electromagnetic spectrum at a multitude of monochro-
matic, adjacent frequency bands. The wide-bandwidth spectral signature of a target object’s reflectance
allows fingerprinting its physical, biochemical, and physiological properties. HSI has been used in various
applications, such as remote sensing and biological tissue analysis. Recently, HSI was also used to
differentiate between healthy and pathological tissue under operative conditions in a surgery room on
patients diagnosed with brain tumors.

When applied to biological tissues, HSI facilitates identifying biomarkers such as tissue metabolic
activity or oxygenation. In turn, the biomarkers can shed light on the functional and pathological state
of the examined tissue [21]. Differentiation between biomarkers from the reflection spectra could be
achieved by relating the spectra with the absorption and scattering properties of the tissue. Absorption
and scattering are the two main processes for light energy dissipation. Mathematically, one can describe
their effect on the incoming electromagnetic wave via the Beer-Lambert law:

IR(λ) = I0(λ)e
−(µa(λ)+µs(λ))·l (1)

where I0(λ) is the intensity of the incoming light, IR(λ) is the intensity of the reflected light captured
by the detector camera, µa and µs are the absorption and scattering coefficients, λ is the wavelength, and
l is the light pathlength. The scattering process originates from different structural inhomogeneities in
living tissue. The scattering coefficient µs is often analytically described using a low-degree polynomial
dependency on the wavelength µs ∼ λ(−n), with n being the degree [28]. Different from the scattering,
the absorption is not a bulk effect but rather occurs at the level of light interaction with single tissue
molecules (or, more precisely, with molecules’ chromophores). The energy dissipation due to absorption is
transformed into the excitation of molecules. Since the excitation happens when light energy matches the
distance between quantum energy states (which is a unique molecular property), chromophores’ absorption
spectra possess characteristic peaks.

Brain tissues vary in their content of chromophores. For example, blood vessels have a relatively
larger concentration of hemoglobin, whereas glioma tissue presumably has a higher percentage of cy-
tochrome (a protein actively involved in metabolic processes) [1, 55]. Thus the total absorption spectra
(∼ exp(−(

∑
i ciµ

i
a)) should manifest varying spectral signatures (here ci defines the concentration of a

particular chromophore). Correspondingly, the captured reflection spectrum varies across tissue types
as it is inversely proportional to the total absorption. The open question is whether one can solve the
inverse problem, i.e., retrieve from the reflectance spectrum the composition of chromophores.

Several works exist attempting to perform unmixing of a reflection spectrum into a composition of
chromophores spectra [11, 12]. However, the main bottleneck of recovering a physiologically complete
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Synthetic RGB image Tumor tissue Normal tissue Blood vessels

Figure 1: An example of a synthetic RGB image from the HELICoiD dataset. The image was obtained
by merging three bands corresponding to red, green, and blue wavelengths from an HSI cube. The
segmentations overlayed on top of the image represent three classes: tumor tissue, normal tissue, and
blood vessels.
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Figure 2: Raw HSI spectra for three HELICoiD classes: tumor tissue, normal tissue, and blood vessels
(left). Raw HSI spectra for the three HELICoiD classes and absorption spectra of typical chromophores:
reduced and oxidised cytochrome-c-oxidase, oxy- and deoxy-hemoglobin (right).

chromophore set is the ill-posedness of the inverse problem. Despite having characteristic peaks, the
absorption spectra do not form an orthogonal basis within the HSI operation range of wavelengths. Thus,
mathematically speaking, the mapping between reflection spectra and chromophores set is not bijective,
i.e., different combinations of chromophores absorption can equally fit the reflectance. This is one of
the reasons why existing works test unmixing algorithms with a limited number of chromophores in a
composition.

Inspired by previous works [20, 53], we aim to identify chromophores spectra from glioma HSI images
in a model-agnostic fashion by using statistical analysis means. Namely, we perform a PCA study to
identify correlations between the principal components and the absorption spectra of various chromophores
constituting brain tissues.

2.1 Connecting PCA with optical tissue properties

For our study, we used HSI images from the HELICoiD dataset [16]. The HELICoiD dataset consists of
glioma patients which underwent HSI monitoring during surgical operations. The image dimensions are
of varying spatial size across the dataset but with a fixed spectral size of 826 bands. The images were
sparsely labeled (less than 25% of the image area) into four classes: tumor tissue, normal healthy tissue,
blood vessels, and background, Figure 1. We preselected twelve patients which were diagnosed with grade
IV glioblastoma as the primary tumor. From each of the preselected patients, we extracted spectra that
belong to three classes (all HELICoiD classes, except the background). In total, we collected 30k spectra
equally distributed over the three semantic classes. Figure 2 demonstrates typical raw spectral profiles for
each class. The absorption spectra were taken from the BORL GitHub repository [47].

Next, we performed the PCA for all 30k spectra in a high-dimensional space (R826) to identify axes
of the highest variance. Our reasoning here is that, on one side, the projections of the first principal
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component (or a few first ones) into the original basis would inform us on how each HSI spectral band is
important for capturing the data variance. On the other hand, the spectral variance between the tissue
classes originates from the different distributions of chromophores’ concentrations. Therefore, we expect
to observe a correlation between the principal components and the absorption spectra of chromophores.

We performed PCA in two different settings:
1. First, we wanted to identify the principal components for a mixed dataset composed of spectra from

different tissue classes. Such a test would allow determining spectral bands that best differentiate between
the classes. Figures 3 and 4 show the results of such PCA tests. Here, ntb denotes the 1st principal
component for a dataset composed of all three classes, nt - for normal and tumor tissue samples, nb - for
normal tissue and blood vessels. We visualize only the 1st component weights since it explains more than
98% percent of the variance.
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Figure 3: Absorption spectra of cytochromes: oxidized (upper row) and reduced (bottom row) of three
prosthetic group types (CCO, cyt-b, and cyt-c). In solid line, we show the 1st principal component for
four different datasets: ”ntb” denotes a dataset composed of all three classes (normal tissue, tumor, blood
vessels), ”nt” - is for normal and tumor tissue samples, ”nb” - for normal tissue and blood vessels, and ”bt”
- for blood vessels and tumor. Reduced cytochrome-c-oxidase (redCCO) reveals the highest correlation
with the principal component.

As evident from the figures, the range between 500 and 600 nm brings the highest correlation.
Particularly absorption profile of the reduced cytochrome-c-oxidase (redCCO) reveals a very close match
with the principal component. This can confirm our original hypothesis, as this is the interval of wavelengths
where redCCO has characteristic absorption peaks. Cytochromes are present in a high concentration
in the tumor microenvironment, less so in normal tissue, and only marginally in the endothelial cells of
the inner walls of blood vessels. Our statistical analysis accurately captures this biological fact - the 1st
principal component has the highest weights for separation between tumor tissue and blood vessels (bt)
while having smaller weights for tumor against normal tissue (nt) and the blood versus normal tissue (nb)
separation.

2. We wanted to test whether PCA can reveal spectral signatures correlated with molecular absorption
within a single class. This test is motivated by the fact that glioma tissue possesses high variability of
cytochrome concentration since the tumor is vastly heterogeneous. In enhancing actively proliferating
tumor, the hypermetabolism should be accompanied by an abnormal cytochrome amount [1]. In contrast,
no proliferation is expected in the necrotic core area, and thus, the concentration of cytochrome should
be minimal. Therefore the weights of the 1st principal component are expected to be aligned with the
cytochrome absorption and be more pronounced for the tumor class than for healthy tissue and vessels.
This was also confirmed by the PCA, as seen in Figure 5 - the 1st principal component of the dataset
composed of tumor samples has the highest weight in the 500-600 nm range. We want to point out that
total absorption from any tissue class is a combination of absorption from a set of chromophores. For
example, Figure 4 illustrates that oxy- and deoxyhemoglobin also have characteristic peaks in this interval.
Hemoglobin concentration in tissues, though, has a contrary distribution to cytochrome, being higher in
blood vessels and less in tumor and normal tissues. However, as discussed just above, the intra-class PCA
rather captures the relation between tissues in its dependency on cytochrome. This poses the question



D4.1 Software tools for deep learning-based reconstruction

400 500 600 700 800
Wavelength, nm

0.01

0.02

0.03

0.04

0.05

0.06

ntb
nt
nb
bt

0

20

40

60

80

100

120HHb

400 500 600 700 800
Wavelength, nm

0.01

0.02

0.03

0.04

0.05

0.06

ntb
nt
nb
bt

0

20

40

60

80

100

120

140HbO2

400 500 600 700 800
Wavelength, nm

0.01

0.02

0.03

0.04

0.05

0.06

ntb
nt
nb
bt

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Ab
so

rp
tio

n 
co

ef
fic

ie
nt

, O
D/

cm
/m

MWater

Figure 4: Absorption spectra of hemoglobin, deoxy- (left) and oxy- (middle), and water(right). In solid
line, we show the 1st principal component for four different datasets: ”ntb” denotes a dataset composed
of all three classes (normal tissue, tumor, blood vessels), ”nt” - is for normal and tumor tissue samples,
”nb” - for normal tissue and blood vessels, and ”bt” - for blood vessels and tumor.
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Figure 5: Absorption spectra of reduced cytochrome and PCA components. In solid line, we show the 1st
principal component for four different datasets: ”ntb” denotes a dataset composed of all three classes
(normal tissue, tumor, blood vessels), ”nt” - is for normal and tumor tissue samples, ”nb” - for normal
tissue and blood vessels, and ”bt” - for blood vessels and tumor.

of whether the observation is due to a much higher concentration of cytochrome than hemoglobin in
tissues or a much larger variance in cytochrome within a tissue class. We did not find evidence for the
former in literature, rather opposite is typically observed [24]. And if the latter is true, the difference
between the magnitude of the principal components for the three tissue classes can quantify the intra-class
chromophore variance. Such knowledge helps in understanding plausible ranges of concentration which is
in turn valuable for deciphering the molecular profiling of tissue.

To conclude, in this work, we analyze HSI glioma images from the HELICoiD project. We perform
a PCA-based statistical analysis of this dataset to identify chromophore absorption signatures in the
HSI reflection spectra. PCA revealed the correlation of chromophores, especially cytochrome, with the
principal components. We discuss the possibility of using such analysis to decypher relative chromophore
concentration in brain tissues. We see such analysis as a vital tool for the identification of chromophore
fingerprints complementing traditional spectral unmixing techniques.

3 Learnable real-time inference of molecular composition from
diffuse spectroscopy of brain tissue

In our next work, we developed a data-driven technique for inferring molecular composition changes
from diffuse spectroscopy of brain tissue, enabling real-time intra-operative monitoring. Our motivation
stems from the fact that no established method exists to streamline the inference of the biochemical
composition from the optical spectrum for real-time applications. However, various biomedical applications,
such as neurosurgery, have an unmet need for rapid monitoring of intrinsic tissue properties [18,19,39].
Spatially-resolved maps of the tissue characteristics would allow bypassing invasive disease diagnostics,
e.g., biopsy, which halt the operation. Instead, a surgical decision could be made during the operation,
reducing its time and preserving a healthy brain.

As mentioned in the first section of the deliverable, analytical and statistical approaches exist aiming
to unmix optical spectra into the physical phenomena defining the spectra profile under a limited data
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regime [6, 11, 15,20, 34,48, 53]. A large number of methods mitigate the data scarcity by introducing a
physical prior to establish the spectrochemical link. Typically, the modified Beer-Lambert law [40, 46]
is used to provide such a link by describing the incoming light’s energy dissipation as an exponentially
decaying function:

log(IR(λ)/I0(λ)) = −

[∑
i

ciµ
i
a(λ) + sµs(λ)

]
l + U (2)

Here, IR(λ) and I0(λ) are the intensities of the reflected and the incoming light, µa and µs are the
absorption and scattering coefficients, the index i denotes the molecule constituting the tissue such as
water, fat, hemoglobin and cytochromes, ci denotes the corresponding concentration (e.g. as volume
fraction), and s is the weight of scattering in the total light energy dissipation. The remaining quantities
are λ, which is the light wavelength, l is the light pathlength∗, and U describes other physical factors
contributing to the energy dissipation of the incoming light or other sources of the optical signal captured
by the light detectors or cameras.

Typical molecules whose changes in concentration are inferred include oxyhemoglobin, deoxyhemoglobin,
and cytochrome-c-oxidase (CCO) [22]. Measurement of the former two chromophores can reveal e.g.
oxygenation status of the brain, and can help determine hypoxic or hyperoxic conditions. CCO is a
fundamental metabolic molecule correlated to ATP production during cellular respiration, which has
previously complemented obtained hemodynamic information in various applications [4, 22].

Now, in the case of changes in molecular composition over the course of optical monitoring, one can
assume that the effects contributing to U either stay constant (e.g., which is a fair assumption for ambient
illumination) or change notably less than the total absorption†. Under this assumption, subtraction of two
reflection spectra, log I2R− log I1R (traditionally, these have been two different points in time, but this could
also be true for different points in space), would cancel out or make negligible the term δU = U2 − U1 in
the following equation:

log(I2R(λ)/I
1
R(λ)) = −

[∑
i

δciµ
i
a(λ) + δ(sµs(λ))

]
l + δU (3)

In such a differential form, the modified Beer-Lambert law can now be used to identify molecular
composition. For this, standard least-squares optimization algorithms (or non-negative matrix factorization
[8, 34]) can be employed to minimize the difference between the real spectra and the spectra obtained
from the modified Beer-Lambert law. As a result of the minimization, the optimal values of the set of
concentration changes {δci = c2i − c1i } are obtained (alongside the scattering parameters).

The overarching drawback of this approach is the computational time it takes to infer the biochemical
composition. For example, the optimization methods take a subsecond time to infer the composition of a
single spectrum containing a number of wavelengths typical for bNIRS and HSI (a few hundred). However,
for real-time applications particularly in the case of HSI modality, one needs to solve the optimization
task in a subsecond time for as many spectra as there are spatial pixels, as every pixel contains its own
spectrum. The number of pixels on a hyperspectral image can be easily in the order of 105-106. Providing
subsecond timings for simultaneous inference on such an amount of spectra poses a challenge for traditional
methods.

Contributions. There are numerous studies analyzing the application of machine learning methods
to achieve fast inversion of the physical models based on Beer-Lambert law or Monte-Carlo simulations
[9, 17,27,37,41,45,51]. Predominantly they imply training a machine learning model on synthetic data
generated by following the chosen physical formalism, and then evaluating the trained model on real
spectra. While proven to work for the use cases mentioned in the cited works, this approach might be
inferior as synthetic data generators likely underestimate the complexity of real data. To mitigate this,
we tested different strategies for model training using only the synthetic data as in previous works or
incorporating real data via traditional optimization in the training procedure.

Second, we test the proposed method on its ability to approximate physical models of varying
complexity: linear (absorption only) and non-linear (absorption combined with scattering). While
evaluated independently in previous works, here we also analyse our approach to explicitly compare both

∗Even though several works demonstrate the importance of wavelength-dependent definition of the pathlength [3], in
what follows, for simplicity, we opted for constant pathlength independent of the wavelength.

†In certain scenarios, even changes in scattering are not expected since it is a rather bulk effect dependent on the density
of the probed matter rather than molecule-specific one.
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models in terms of spectral fit. This comparison is motivated by a desire to elucidate the conditions under
which the linear model (that can be easily solved using, e.g. pseudoinverse) is appropriate for describing
the light-brain matter interaction process, and where inclusion of the scattering is necessary.

Third, given that the work is carried out within the HyperProbe project [25] aiming to achieve real-
time brain tissue monitoring, the present paper evaluates the computational timing for the biochemical
composition inference across different methods and hardware platforms. To reinforce the comparison,
in contrast to previous works manually choosing the hyperparameters’ values of the machine learning
methods, we used the AutoML technique [32] to identify the most optimal hyperparameters set.

Finally, to our knowledge, this is the first work that applies a neural-network-based approach to provide
real-time inference of chromophore composition from in-vivo brain tissue spectroscopy measurements
[2, 7, 10, 13, 29, 36, 43, 52, 54]. We evaluate and discuss applicability of the method on broadband NIRS
(transmission mode) [30] and hyperspectral (reflection mode) [16] measurements of brain tissue.

As mentioned in the introduction, inference of absolute chromophore concentrations from an optical
spectrum is a challenging task due to multiple physical effects shaping the reflection spectrum. Thus, we
instead aim to predict the changes in concentrations from changes in the spectra, Eq. 3.

Inference

Finally, we use the 
trained network to 
predict the 
concentrations change 
from reflection spectra in 
the test set

Generating a dataset

We generate a dataset of 
optical spectra - 
molecular 
concentrations pairs 
using the modified 
Beer-Lambert law and 
traditional least squares 
minimisation

Training a network

We train a neural 
network on the 
generated data to learn a 
mapping between the 
spectral and 
concentrations change
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Figure 6: The general pipeline describing the learnable approach for inferring concentrations’ changes
of molecules such as reduced and oxidized cytochrome-c-oxidase, oxy- and deoxy-hemoglobin {δci} =
{δredCCO, δoxCCO, δHHb, δHbO2, etc}. The pipeline involves training on a dataset which is generated
by the means of a modified Beer-Lambert model. According to the model, the light reflection IR is shaped
by the absorption µa and scattering µs phenomena.

3.1 Datasets creation

In our method, Fig. 1, we use a supervised data-driven approach by creating a dataset of attenuation-
concentration pairs to train a neural network (by attenuation, or more precisely the change of it, we imply
the logarithm of the reflection: ∆A = log I2R − log I1R). We employ two different strategies to create the
dataset:

a) The first strategy directly utilizes the modified Beer-Lambert law to generate the training dataset
pairs (∆A, {δci}) with ∆A being the difference in attenuation between two spectra and {δci} the
corresponding differences in concentration of chromophores, Fig. 2 (a). For each chromophore, we
randomly sample values for changes in the molecular composition {δci} using the uniform distribution
within physiologically plausible ranges. These ranges were determined based on values typically used in
the literature, and further details are provided in the appendix.

If scattering is included in Eq. 3, we may assume it to be of rational form:

sµs(λ) = s

(
λ

500nm

)−b

(4)

with the scaling of the anisotropy g = 0.9 included in s = s′/(1− g) [22,28]. In the differential form, we
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Figure 7: Two strategies for collecting the training dataset. Strategy (a) in which we train a network on
synthetic attenuation-concentration pairs generated from the modified Beer-Lambert law, above. Strategy
(b) in which the training is performed on pairs of real attenuation and concentrations obtained through
the least-squares fit to the corresponding real spectra, below.

obtain

δ(sµs(λ)) = s2

(
λ

500nm

)−b2

− s1

(
λ

500nm

)−b1

(5)

and therefore also uniformly sample parameters s1, s2, b1, b2 within plausible ranges [28]. Subsequently,
we input the obtained values into the modified Beer-Lambert law to obtain synthetic differential attenua-
tions ∆A(λ). This difference in attenuation ∆A as input and the corresponding {δci} as output are then
used for training.

b) Given that the distribution of the synthetic spectra obtained according to the strategy described
above can be notably different from the distribution of real spectra, this can result in an unsatisfactory
network prediction accuracy. Therefore, in addition to (a), we evaluate another strategy for creating a
dataset trying to bridge the gap between the physical model and real data, Fig. 2 (b). For this, we use
traditional least squares minimization to fit the changes in the real reflectance spectrum with the modified
Beer-Lambert law. The concentrations {δci} found upon the optimization and the corresponding ∆A
constitute the training samples.

3.2 Network and optimization details

The training was performed using a multi-layer perceptron (MLP [44]) neural network for both approaches.
The network takes as input a one-dimensional vector of attenuation difference and outputs molecular
concentration changes.
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We trained both networks with early stopping when they reached convergence. To find the optimal
network architecture, we used the Ray Tune library [32] to validate different MLP architectures (width,
number of hidden layers, and activation functions), learning rates, and batch sizes. More details regarding
the networks and the training procedure can be found in the appendix.

Least squares optimization for the Beer-Lambert law, excluding the scattering effect, can be performed
via multiplication of the observed attenuation with the pseudoinverse of the absorption coefficients [22].
In order to perform the nonlinear least-squared optimization for the Beer-Lambert law model including
scattering, we used the publicly available solver of the SciPy library [50]. We used the least-squares
minimization obtained predictions as the ground truth to validate all the trained networks.

3.3 Data

For our experiments, we applied two types of Beer-Lambert law formulation, with and without scattering,
to two types of spectral datasets: broadband NIRS data for which the spectra were measured in light
transmission mode [30] and hyperspectral data which were obtained in non-contact reflection mode [16].

3.3.1 Broadband NIRS

The first dataset is composed of broadband NIRS spectra from a study analyzing 27 piglets’ brains in
which a hypoxia-ischemia (HI) state was induced [30]. The piglets were monitored for several hours, during
which the carotid arteries were surgically isolated, and a stepwise hypoxia took place for 15-20min. This
produced a significant hypoxic-ischaemic effect that changed the metabolic status of the brain and, in
some instances, caused further brain injury. The details of the intervention protocol are described in [30].
The optical device used in the study utilizes a miniature light source and a customized high-throughput
miniature spectrometer, connected to high numerical aperture optical fibers. The measurements contain
around eight thousand spectra per piglet. The distance between each measured time point is between
10.0 and 10.5 seconds. We use the first thousand measurements, i.e. we only consider the first ∼2.5
hours of measurement. For all piglets, this is sufficient to observe HI and recovery after HI. As Eq. 3
requires defining a baseline spectrum, analogously to [30], we used a spectrum at the very beginning of
optical monitoring (i.e., before HI) for the baseline. We normalized the spectra with respect to dark noise
and white reference. The normalized bNIRS spectra before and after the intervention inducing hypoxia
are shown in Fig. 8 (left), and predictions of the concentrations change over the course of the optical
monitoring are shown in Fig. 8 (right). Out of the 27 piglets in the dataset, 25 had data available during
HI, such that 19 were used for training, two for validation, and four for testing. For this dataset, we
predict three types of molecules: oxyhemoglobin, deoxyhemoglobin, and differential cytochrome-c-oxidase
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Figure 8: Optical spectra from the broadband bNIRS study in [30] before, during and after induc-
ing HI in the piglet’s brain (left). On the right, predictions of the molecular concentration change
{δcHbO2 , δcHHb, δcdiffCCO} over the course of the optical monitoring (for the Beer-Lamber model without
scattering). The vertical lines denote the time points corresponding to the normalized reflection spectra
on the left.
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Figure 9: Optical spectra from the HSI study of patients diagnosed with glioma [16] for different tissue
types: tumor, normal tissue, and blood vessels (left). On the right is a typical RGB image of the brain
surface, which is obtained from the HSI volume. The dots correspond to the spectra on the left image.
The black circles on the RGB image are rubber rings that surgeons used to mark tumomr and healthy
tissues.

(CCO)†, i.e. {δci} = {δcHbO2
, δcHHb, δcdiffCCO}, where δcdiffCCO = δcoxCCO − δcredCCO. We neglected

the potential contribution to the spectra from water and fat due to their minimal change in concentrations
during the 2.5 hours of monitoring [24,30]. Note that we assume unitary pathlength in our experiments,
which results in units of [mM/cm] and [1/cm] for the inferred concentrations. In the NIR range, it
has been shown that the pathlength is semi-constant [30], which effectively leads to a simple rescaling
in our concentrations when using this assumption. This can also be observed when comparing the
inferred exemplary concentrations from Fig. 8 (right) with pathlength-corrected concentrations in previous
work [30].

3.3.2 Hyperspectral data

The second dataset we used consists of hyperspectral data from the Helicoid project [16]. The Helicoid
dataset comprises brain HSI images obtained in surgical conditions from 22 patients diagnosed with
glioma. The optical instrumentation is based on pushbroom technique and a silicon CCD detector array
as a camera. The HSI images provide a high spectral resolution of 826 bands spread between 400 and
1000 nm and a 2D spatial resolution of a few hundred pixels in each dimension. The images were also
expert-annotated into three tissue classes: normal and tumor tissues, as well as blood vessels. Typical
hyperspectral image and corresponding spectra are shown in Fig. 9. Different from the bNIRS dataset,
we used a spectrum of the pixel belonging to the blood vessel class as a baseline spectrum§. We then
subtracted the baseline spectrum from all other spectra in the same image. In other words, we performed
the differential spectroscopy not in time but in space.

Besides predicting oxyhemoglobin δcHbO2
and deoxyhemoglobin δcHHb, we again infer the differential

cytochrome-c-oxidase concentration due to its role in capturing oxidative metabolic activity. We separately
predicted oxidized cytochrome-c-oxidase and reduced cytochrome-c-oxidase, as the total CCO concentration
may not be assumed to remain constant in space. We also predict water and fat since, for these molecules,
one cannot assume minimal concentration change across different tissue types as in the case of the bNIRS
spectra. For reference, the absorption spectra can be found in the appendix.

Fig. 10 showcases examples of molecular inference for the HSI images from the Helicoid dataset.
Out of the nine patients with glioblastoma in the dataset, six with distinct class labeling were chosen,

†As the total CCO concentration may be assumed to not change within a few hours, the oxidized-reduced difference
spectrum µdiffCCO

a may be used to infer changes of both oxidized and reduced CCO [4].
§The blood vessel was used as a reference for a couple of reasons. The blood vessel is clearly distinguishable from the

other two tissue types, tumor and non-tumor tissue. These two types of tissue are highly heterogeneous, e.g. within a pixel
area, they can have small capillaries, leakage of blood, agglomeration of dead cells, etc. In contrast, the blood vessel pixels,
especially the ones belonging to large arteries, are less heterogeneous. Moreover, it is assumed that blood vessels do not
possess cytochrome molecules. Thus, it is a better reference when one sets a goal of detecting the presence of cytochromes in
the brain matter.
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Figure 10: Examples of HSI images of two patients, shown with respective patient ID, from the Helicoid
dataset [16] (left). Each pixel in the shown 2D image possesses a spectral signature with 826 bands. From
this signature, we predict the molecular concentration change for hemodynamic δcHbT = δcHbO2

+ δcHHb

(middle), and metabolic δcdiffCCO = δcoxCCO − δcredCCO characterization (right). Here, we use the
Beer-Lambert model with scattering, as it provides a closer fit to real spectra than the model without
scattering. We observe that performing the spectral unmixing on the HSI measurement of brain tissue
allows us to better contrast the vessel tree (middle) and tumor area (right) than on the RGB image.

and three patients were used for training, one for validation, and two for testing. Note that patients
might have multiple images taken, and different images from the same patient were assigned to the same
training, validation, and test set to avoid set contamination. Therefore, the training set consists of five,
the validation set of one, and the test set of three images.

3.4 Scattering vs Non-scattering

First, before discussing the learnable methods for molecular inference, we test different Beer-Lambert law
formulations - with and without scattering - to elucidate limits of applicability of both models. For the case
of piglets undergoing HI, it is widely assumed that the 780nm to 900nm range is predominantly dominated
by absorption, with scattering being only a minor contributor to the overall measured spectrum [30]. As
measurements in the piglet dataset below the 780nm threshold were available, we opted to extend the
model fitting range from 740nm to 900nm. This test is motivated by our desire to assess whether a linear
model (without scattering) would still be sufficient to describe the broader spectroscopy measurement of
brain tissue.

Fig. 11 shows spectral fits using both formulations. The model with scattering provides a clearly
better fit. It allows us to better describe the peak around 760 nm for the bNIRS data, while for the
HSI data, the inclusion of scattering is often merely necessary for an accurate fit of the spectra in this
wavelength range. This finding is consistent across the dataset, as shown in table 1.

To show that the model with scattering can significantly improve model fits, especially for the higher
frequency portion of the spectrum, we evaluate the relative improvement r in terms of the spectral fit of
the scattering model compared to the non-scattering model. We use mean absolute error (MAE) as a
measure of the fit and compute it for all piglets across different spectrum bands.

The spectral fit MAE is calculated by

MAE =

∑n
i=1 |∆Amodel(λi)−∆Adata(λi)|

n
(6)

where ∆Amodel(λi) represents the model-inferred attenuation at wavelength λi, and ∆Adata the real
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Figure 11: Comparison between predictions using linear (no scattering) and non-linear (with scattering)
models for bNIRS (left) and HSI (right) spectra. The ground truth (GT) attenuation is computed from
the real spectra difference. The inclusion of scattering into the formulation of the Beer-Lambert law
notably improves the spectral fit to real data.

Figure 12: Histograms showing mean relative improvement of the spectral fit MAE for presented scattering
model, compared to the linear model, across all piglets in the dataset for all wavelengths (left), in the
range 740nm-780nm (middle), and in the range 780nm-900nm (right) in the broadband NIRS dataset.
The x-axis represents the relative improvement r between the two models, and the y-axis shows the
number of piglets that achieved the corresponding mean relative improvement r. The dashed line signifies
improvements below zero, i.e. cases where the spectral fit worsened.

measured attenuation, respectively. The relative mean improvement is computed by

r =
MAEscatter −MAElinear

MAElinear

comparing the improvement in mean error between the scattering and linear models, computed across all
timepoints.

The results of such computation for all piglets are shown in figure 12, where we observed a mean
relative improvement of 15.7% over the full fitting range. Such improvement is especially noticeable in
the 740nm to 780nm range, where the mean improvement of the distribution almost doubled at 30.8%.
The spectral fit does not improve significantly in the 780nm to 900nm range, with the mean relative
improvement of the distribution being at merely 5.6%. For one of the 25 piglets, we observed that the
spectral fit slightly worsened in the 780nm to 900nm range through the nonlinear model. However, the
fitting MAE is only worse by 0.6%, and the spectral fit was still better for the overall range and in the
740nm-780nm range. We therefore can still confidently conclude that the presented model is able to fit
the piglets’ measured spectra more closely, especially for presumed scattering-dominated bands.

The necessity of the scattering consideration in the Beer-Lambert model for the HSI data can be
explained by the more pronounced contribution of the scattering process. For the HSI data, we infer the
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difference in molecular composition between different spatial locations on an image, i.e., between different
tissue types. The scattering property across brain tissues can significantly vary, and thus, the scattering
shapes markedly the differential spectra. In contrast, for the bNIRS data, we perform the differential
spectroscopy analysis not in space but in time (comparing two spectra for the same location taken at
different time points), meaning that the molecular inference is performed for the same tissue type.

In conclusion, we find that the non-linear model is especially helpful in describing scattering-dominated
bands. However, the linear model may still be used when absorption is the prevalent physical effect.

Figure 13: Comparison between inference of the molecular composition using the standard optimization
methods and proposed network-based inference for training strategy (a) and (b) on the bNIRS dataset.
The top row compares both strategies when using the linear model, where highly accurate neural network
predictions are visible in both cases. The bottom row compares the strategies when using the non-linear
model, with strategy (b) delivering noticeably more accurate predictions.

3.5 Evaluating different training strategies

Next, we evaluate the proposed machine learning approach in its ability to substitute both the linear
absorption and the non-linear scattering model.

Fig. 13 demonstrates the results of the experiment in which we test the network trained on synthetic
data collected according to strategy (a) and on real data according to strategy (b), for both linear and
non-linear models. For the linear case, both strategies are able to correctly infer the concentrations. The
solution to the linear model can merely be found by a matrix multiplication, i.e. the pseudoinverse, which
is why both strategies are able to very accurately predict the optimization-inferred concentrations.

For the non-linear case, strategy (b) provides qualitatively closer fits. We also tested this model for the
Helicoid dataset, where we found highly matching results by the use of strategy (b), as seen in Table 1.
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Dataset Individual ID Spectral MAE Concentration MAE

Non-Scattering Scattering Strategy (a) Strategy (b)

507 1.23× 10−2 8.60 × 10−3 1.36× 10−2 4.32 × 10−3

Broadband 509 1.09× 10−2 9.37 × 10−3 2.46× 10−2 4.81 × 10−3

NIRS 511 8.01× 10−3 6.60 × 10−3 1.16× 10−2 3.41 × 10−3

512 1.20× 10−2 1.09 × 10−2 1.25× 10−2 4.59 × 10−3

012-01 3.27× 10−2 2.49 × 10−2 1.73× 10−1 1.64 × 10−2

HELICoiD 012-02 2.24× 10−2 2.19 × 10−2 1.50× 10−1 2.58 × 10−2

015-01 6.33× 10−2 2.54 × 10−2 1.75× 10−1 1.54 × 10−2

Table 1: Quantitative performance comparison of the different Beer-Lambert models and network training
strategies on the test set of the two spectral datasets. To compare the two (non-scattering and scattering)
models, we compute the mean absolute error of the spectral fit (denoted as ’Spectral MAE’) between
the ground truth observed and predicted signals. The two network training strategies are compared
by assessing the mean absolute error of each strategy between the network and optimization-inferred
concentrations (denoted as ’Concentration MAE’) of all considered chromophores. In the case of the
HELICoiD dataset, only pixels labeled as normal, tumor, or blood were considered for these computations.
The best-performing model and strategy for each individual is highlighted in bold.

Figure 14: Comparison between infer-
ence time for various optimization ap-
proaches for varying number of spec-
tra (from 10 to 105): including the
pseudoinverse for the linear model
(blue) and optimization-based (red)
for the non-linear scattering model
(both running on CPU), as well as
network-based approach for scatter-
ing model running on CPU (orange)
and GPU (green).

3.6 Computational time

Importantly, the proposed network-based optimization comes with a significant speed-up in computational
time. In Fig. 14, we show a comparative analysis for performing chromophore composition inference using
standard least-squares solvers (based on gradient update or pseudoinverse) and our proposed approach.
The used spectra for this comparative analysis are taken from the broadband NIRS dataset assuming
the scattering model, i.e. they are in the 740nm-900nm range, with a total of 244 measured wavelengths
per spectrum, and the underlying chromophores are oxyhemoglobin, deoxyhemoglobin, and differential
cytochrome-c-oxidase.

As solving the linear system using the pseudoinverse requires the least amount of matrix multiplication,
this method provides the fastest compute. However, with the growth of the number of spectra for which
we solve the optimization task, the matrix size for the inversion increases, and thus the computational
time increases. Starting from ca. 104 amount of spectra, the proposed network having a fixed amount
of computational units becomes superior in terms of optimization time. Such runtime will remain
approximately constant with a further increasing number of spectra, assuming sufficient GPU memory is
available. More importantly, for non-linear systems, which are here represented as a Beer-Lambert model
with the inclusion of scattering, one cannot utilize the pseudoinverse and has to resort to non-linear solvers
like the ones based on gradient update. Such solvers are two to three orders of magnitude slower than the
neural network approach, which has fixed compute time for linear and non-linear systems. As Fig. 14
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shows, it takes ca. 0.4 ms for the network to infer biochemical composition for 105 spectra on NVIDIA
GeForce MX450 with 2048 MiB. Overall, on our hardware, it takes between 2.5 and 3.1 seconds to run
the neural network for one an image from the HELICoiD dataset (the largest among all tested data),
from opening the normalized HSI image and loading the neural network into the GPU, to displaying the
inferred concentrations.

4 Classifying surgical brain tumor biopsy using reconstructed
molecular composition

Finally, we present how the spectral unmixing approach described above, based on the modified Beer-
Lambert Law, can be used to classify surgical biopsies. The biopsies were collected in the Careggi
University Hospital, a partner of the HyperProbe project, from routine glioma patients. In total, we
analysed 11 biopsy samples with different grades of tumor classification, high and low grades.

We compare the inferred concentrations for two scenarios: fitting the whole measured wavelength range
(from 510nm to 900nm) and fitting only the NIR proportion of the spectrum (in our case, from 740nm
to 900nm). For the latter, we expected the major absorbing chromophores to be oxygenated HbO2 and
deoxygenated HHb, the oxidised (oxCCO) and reduced (redCCO) forms of cytochrome-c-oxidase (CCO),
as well as water and lipids. We decided to fit the range between 740nm-780nm (besides the typically
used range of 780nm-900nm), as we have shown above that this might be a scattering-dominated band
(i.e. allowing to recognize the scattering parameters in our model). Although it is still unknown which
chromophores could additionally present major differences in absorbance in the visible light spectrum,
we assumed that such additional chromophores might be oxidized and reduced forms of cytochrome-b
and cytochrome-c. These possess peaks in the 500nm-600nm range, which we thought to be relevant due
to the possible heterogeneity in the metabolic activity of the biopsies. We argue that it is necessary to
report results for both scenarios due to the risk of wrongly inferring molecular concentrations, especially
in the visible range, as the whole set of absorbing chromophores of tumor biopsies remain unknown.

Figure 15: Inferred blood volume (HbT) and differential cytochrome-c-oxidase (diffCCO) concentrations
of high grade S4 FOV1 (top) and low grade S10 (bottom) fitting the whole measured wavelength spectrum
(510nm-900nm). Model fitting of the observed attenuation for the marked pixel in the HbT image is
shown in the third column.
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4.1 Results

For the first scenario, we obtain satisfactory spectral fits matching the measured attenuation, as shown
in figure 15. Blood clusters are resolved with high resolution, due to the hemoglobin peaks in the
500nm-600nm range and the high expected hemoglobin concentration (compared to other chromophores).

As shown in figure 16, we found lipids to be able to separate low grade (grade II and III) glioma
biopsies from high grade glioma biopsies (grade IV) relatively well. Even though we observe significant

Figure 16: Lipid concentrations can be used to distinguish low and high grade glioma samples when
fitting over the entire measured wavelength range. Left: histogram showing density distribution of inferred
lipid concentrations of each pixel in low (displayed in green) and high (displayed in red) grade samples.
Right: distribution means of lipid (reported on x-axis) and diffCCO (reported on y-axis) show that lipid
mean concentrations are able to distinguish all samples, whereas no apparent separation is visible for the
inferred mean diffCCO concentrations.

overlap between the different distributions, we generally notice a trend of higher lipid concentrations
in high grade biopsies. Substantial lipid storage for lipid metabolism is a known characteristic feature
of glioblastoma [31, 49], possibly explaining the difference between lipid content of our low and high
grade biopsies. Contrary to our expectations however, we did not find differential cytochrome-c-oxidase
(diffCCO) or other molecules to be able to separate the two different grades.

In the second scenario, we report the inferred concentrations using exclusively the NIR range, using
chromophores that are known for their characteristic NIRS absorption profile. We are more confident
about the inferred concentrations of this scenario, as the BLL has commonly been employed in this range
to infer differences in metabolic activity [5]. As shown in figure 17, we again qualitatively fit the observed
signal well, albeit being slightly worse due to the expected reduction in SNR at the latter end of the
measured spectrum.

Notable loss in the resolution of various blood clusters can be observed, which was also expected due
to the exclusion of the 510nm-600nm with large hemoglobin absorption peaks. Interestingly, we observed
significant differences to the inferred molecular concentrations. Note that in this scenario, the inferred
lipid concentrations were not able to distinguish between the different grades of the samples. However,
we noticed metabolic diffCCO differences between low and high grade samples, with high grade samples
showing lower diffCCO concentrations, as seen in figure 18.

Oxygenated HbO2 hemoglobin was additionally found to distinguish most biopsies, which can also be
observed in figure 18. Furthermore, we noticed that both oxCCO and redCCO are not able to distinguish
biopsy grading. Only the difference between the two inferred concentrations resulted in the shown
distinction of the two types. This emphasizes the potential role of differential cytochrome-c-oxidase in
providing metabolic differences that lies beyond its critical use in NIRS applications [23]. As the high
grade sample 9 additionally displays diffCCO characteristics close to low grade samples, we hypothesized
that there could be different (possibly concurrent) reasons for this low distinguishability. Even though it
has not been shown that high grade samples can show characteristics of low grade samples, the opposite
(i.e. high grade-typical histological characteristics in low grade lesions) has recently been reported [38]. In
general, we therefore think that it might be possible that lower grade lesions could display characteristics
of higher grade lesions. We highlight two possible mechanistic reasons below.

Firstly, the 2021 World Health Classification between low and high grade gliomas is known to lack
metabolic characterisation, instead relying on DNA/RNA chromosomic alterations [33]. We therefore
did not expect to be able to separate all low and high grade samples via the inferred diffCCO metabolic
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Figure 17: Inferred blood volume (HbT) and differential cytochrome-c-oxidase (diffCCO) concentrations
of high grade sample S4 FOV1 (top) and low grade sample S10 (bottom) fitting exclusively the NIR range
(740nm-900nm). Model fitting of the observed attenuation for the marked pixel in the HbT image is
shown in the third column.

concentrations. Surprisingly, we were still however able to separate most of our samples in the limited set
of biopsies. Secondly, we argue that there might be critical immune-mediated differences leading to low
distinguishability of S9 [35,42]. Different infiltration of bone marrow derived macrophages (BMDM) and
resident microglia (MG), leading to differences in iron metabolism and immunomodulation of the tumor
area, are possible.

Figure 18: Differential cytochrome-c-oxidase concentrations are able to distinguish low and high grade
samples, when fitting exclusively in the NIR range. Left: Histogram showing probability density of inferred
diffCCO concentrations of each pixel across different low (displayed in green) and high (displayed in red)
grade samples. Right: Distribution means of diffCCO (reported on x-axis) and HbO2 (reported on y-axis)
shows that the inferred distribution means are able to distinguish low and high grade samples.
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5 Conclusions

In this report, we present development and validation of algorithmic tools for reconstruction of spectral
imaging. We first analyzed HSI glioma images from the HELICoiD project. We performed a PCA-based
statistical analysis of this dataset to identify chromophore absorption signatures in the HSI reflection spectra.
PCA revealed the correlation of chromophores, especially cytochrome, with the principal components.
We discuss the possibility of using such analysis to decypher relative chromophore concentration in brain
tissues.

Next, we described a data-driven concept developed for inferring molecular composition change from
diffuse spectroscopy of brain tissue. We tested the approach on various datasets (bNIRS and HSI) and
physical models of different complexity (with and without scattering, i.e., linear and non-linear systems).
Importantly, we evaluated different training strategies for neural-networks-based molecular prediction.
The proposed strategy provides predictions that are nearly identical to the traditional least-squares-fit
method, making the learnable solver an accurate alternative. The method achieves subsecond time for
simultaneous inference of molecular composition across a large number of spectra, allowing for real-time
tissue characterization using bNIRS and HSI imaging modalities.

Finally, we analysed the proposed methodology on a surgical biopsy dataset collected within the
HyperProbe project. We found significant differences in the inferred concentrations of low and high grade
biopsies that allow to distinguish between the two. This observation remains true for both presented
inference scenarios with different illumination wavelength range. For the first case the differences arise due
to lipid content (having notable peaks in the NIR range), while in the second case they arise especially for
diffCCO (also having notable absorption in the NIR range).

The proposed methodology will serve as a basis for image analysis, the focus of the D4.2 deliverable,
and be further calibrated on animal and tissue phantom studies carried out within the duration of the
HyperProbe project.

Data Repository

The software tools used for all the described works and results have been made publicly available on
github under the following link: https://github.com/HyperProbe/SpectraFit. The pre-prints of the
manuscripts are available on an open-access online archive (arXiv) [14,15,26].

References

[1] H. Abramczyk, J. M. Surmacki, B. Brozek-Pluska, and M. Kopec. Revision of commonly accepted
warburg mechanism of cancer development: Redox-sensitive mitochondrial cytochromes in breast
and brain cancers by raman imaging. Cancers, 13(11):2599, 2021.

[2] Y. Altmann, N. Dobigeon, J.-Y. Tourneret, and S. McLaughlin. Nonlinear unmixing of hyperspectral
images using radial basis functions and orthogonal least squares. In 2011 IEEE International
Geoscience and Remote Sensing Symposium, pages 1151–1154. IEEE, 2011.

[3] A. Bahl, S. Segaud, Y. Xie, J. Shapey, M. Bergholt, and T. Vercauteren. A comparative study of
analytical models of diffuse reflectance in homogeneous biological tissues: Gelatin based phantoms
and monte carlo experiments. arXiv preprint arXiv:2312.12935, 2023.

[4] G. Bale, C. E. Elwell, and I. Tachtsidis. From jöbsis to the present day: a review of clinical near-
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